New bounds for spherical finite distance sets

David de Laat (ICERM/MIT)
Fabrício Machado (Universidade de São Paulo)
Fernando Oliveira (TU Delft)
Frank Vallentin (Universität zu Köln)

Computation and Optimization of Energy, Packing, and Covering, 11 April 2018, ICERM
Packing problem 1: Independent sets in finite graphs

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ-number upper bounds the independence number
- Can be computed through semidefinite programming (SDP)
Packing problem 1: Independent sets in finite graphs

Example: the Petersen graph

Example: the Petersen graph
Packing problem 1: Independent sets in finite graphs

Example: the Petersen graph
Packing problem 1: Independent sets in finite graphs

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
Packing problem 1: Independent sets in finite graphs

- In general difficult to solve to optimality (NP-hard)
- The Lovász ϑ-number upper bounds the independence number
Packing problem 1: Independent sets in finite graphs

Example: the Petersen graph

- In general difficult to solve to optimality (NP-hard)
- The Lovász ħ-number upper bounds the independence number
- Can be computed through semidefinite programming (SDP)
Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)

A graph whose vertex set is a Hausdorff space is a *topological packing graph* if each finite clique is contained in an open clique.
Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a *topological packing graph* if each finite clique is contained in an open clique.

Motivating example: The spherical cap packing problem
Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a *topological packing graph* if each finite clique is contained in an open clique.

Motivating example: The spherical cap packing problem
- As vertex set we take the unit sphere

[Bachoc-Nebe-Oliveira-Vallentin 2009] showed the Delsarte bound can be interpreted as the ϑ-number of this graph.
Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a *topological packing graph* if each finite clique is contained in an open clique.

Motivating example: The spherical cap packing problem
- As vertex set we take the unit sphere
- Distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:
Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a topological packing graph if each finite clique is contained in an open clique.

Motivating example: The spherical cap packing problem
- As vertex set we take the unit sphere
- Distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:
- Optimal density given by the independence number $\alpha(G)$
Packing problem 2: Topological packing graphs

Definition (L-Vallentin 2015)
A graph whose vertex set is a Hausdorff space is a *topological packing graph* if each finite clique is contained in an open clique.

Motivating example: The spherical cap packing problem
- As vertex set we take the unit sphere
- Distinct vertices x and y are adjacent if the spherical caps centered about x and y intersect in their interiors:

![Diagram of spherical caps](image)

- Optimal density given by the independence number $\alpha(G)$
- [Bachoc-Nebe-Oliveira-Vallentin 2009] showed the Delsarte bound can be interpreted as the ϑ-number of this graph.
Packing problem 3: Almost finite graphs

- The symmetry group Γ of a topological packing graph G is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies.
- The symmetry group Γ of a topological packing graph G is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let I be the set of independent sets in the graph

Motivating example: Spherical finite distance graphs
- Two vertices $x, y \in S^{n-1}$ are adjacent if $x \cdot y \not\in \{1, a_1, \ldots, a_r\}$
- $|I/\Gamma| < \infty$ follows from the fact that any two isometric sets in \mathbb{R}^n are related by an isometry of \mathbb{R}^n
Packing problem 3: Almost finite graphs

- The symmetry group Γ of a topological packing graph G is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let I be the set of independent sets in the graph
- Consider graphs where the quotient I/Γ is finite
Packing problem 3: Almost finite graphs

- The symmetry group Γ of a topological packing graph G is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let I be the set of independent sets in the graph
- Consider graphs where the quotient I/Γ is finite

Motivating example: Spherical finite distance graphs
Packing problem 3: Almost finite graphs

- The symmetry group Γ of a topological packing graph G is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let I be the set of independent sets in the graph
- Consider graphs where the quotient I/Γ is finite

Motivating example: Spherical finite distance graphs
- Two vertices $x, y \in S^{n-1}$ are adjacent if $x \cdot y \notin \{1, a_1, \ldots, a_r\}$
Packing problem 3: Almost finite graphs

- The symmetry group Γ of a topological packing graph G is the group of all autohomeomorphisms of the vertices preserving adjacencies and nonadjacencies
- Let I be the set of independent sets in the graph
- Consider graphs where the quotient I/Γ is finite

Motivating example: Spherical finite distance graphs
- Two vertices $x, y \in S^{n-1}$ are adjacent if $x \cdot y \notin \{1, a_1, \ldots, a_r\}$
- $|I/\Gamma| < \infty$ follows from the fact that any two isometric sets in \mathbb{R}^n are related by an isometry of \mathbb{R}^n
Packing problem 3: Almost finite graphs

- Can use bounds for spherical finite distance graphs to obtain bounds on the maximum number of equiangular lines and nonexistence proofs of strongly regular graphs.
Packing problem 3: Almost finite graphs

- Can use bounds for spherical finite distance graphs to obtain bounds on the maximum number of equiangular lines and nonexistence proofs of strongly regular graphs
- The Delsarte 2-point bound and Bachoc-Vallentin 3-point bound have been studied extensively in the context of spherical finite distance graphs and equiangular lines [Delsarte, Goethals, Seidel, Barg, Yu, King, Tang, Glazyrin]
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
- $\mathcal{C}(V^2 \times I_{k-2})_{\geq 0}$ cone of continuous maps $T: V^2 \times I_{k-2} \to \mathbb{R}$
 where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel
A hierarchy of \(k \)-point bounds for packing problems

- \(I_{k-2} \) is the set of independent sets of cardinality \(\leq k - 2 \)
- \(\mathcal{C}(V^2 \times I_{k-2}) \succeq_0 \) cone of continuous maps \(T : V^2 \times I_{k-2} \to \mathbb{R} \)
 where each \((x, y) \mapsto T(x, y, Q) \) is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

\[
\Delta_k(G)^* = \inf \left\{ \alpha : \alpha \in \mathbb{R}, T \in \mathcal{C}(V^2 \times I_{k-2}) \succeq_0, B_kT \leq (\alpha - 1)1_{I=1} - 21_{I=2} \right\}
\]
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
- $\mathcal{C}(V^2 \times I_{k-2})_{\geq 0}$ cone of continuous maps $T: V^2 \times I_{k-2} \to \mathbb{R}$
 where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$\Delta_k(G)^* = \inf \left\{ \alpha : \alpha \in \mathbb{R}, T \in \mathcal{C}(V^2 \times I_{k-2})_{\geq 0}, \right.$$
$$B_k T \leq (\alpha - 1) \mathbf{1}_{I=1} - 2 \mathbf{1}_{I=2} \left. \right\}$$

$$B_k : \mathcal{C}(I_k \setminus \{\emptyset\}) \to \mathcal{C}(V^2 \times I_{k-2}), \quad B_k T(S) = \sum_{Q \subseteq S: \ |Q| \leq k-2} \sum_{x, y \in S: \ {x, y} \cup Q = S} T(x, y, Q)$$
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
- $\mathcal{C}(V^2 \times I_{k-2})_{\succeq 0}$ cone of continuous maps $T : V^2 \times I_{k-2} \to \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$\Delta_k(G)^* = \inf \left\{ \alpha : \alpha \in \mathbb{R}, T \in \mathcal{C}(V^2 \times I_{k-2})_{\succeq 0}, B_kT \leq (\alpha - 1)1_{I=1} - 21_{I=2} \right\}$$

$B_k : \mathcal{C}(I_k \setminus \{\emptyset\}) \to \mathcal{C}(V^2 \times I_{k-2})$, $B_kT(S) = \sum_{Q \subseteq S: |Q| \leq k-2} \sum_{x, y \in S: \{x, y\} \cup Q = S} T(x, y, Q)$

- $\alpha(G) \leq \Delta_k(G)^*$ for all compact topological packing graphs G
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
- $\mathcal{C}(V^2 \times I_{k-2})_{\geq 0}$ cone of continuous maps $T: V^2 \times I_{k-2} \to \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

\[
\Delta_k(G)^* = \inf \left\{ \alpha : \alpha \in \mathbb{R}, \ T \in \mathcal{C}(V^2 \times I_{k-2})_{\geq 0}, \ B_k T \leq (\alpha - 1)1_{I=1} - 21_{I=2} \right\}
\]

\[B_k : \mathcal{C}(I_k \setminus \{\emptyset\}) \to \mathcal{C}(V^2 \times I_{k-2}), \ B_k T(S) = \sum_{Q \subseteq S: |Q| \leq k-2} \sum_{x, y \in S: \{x, y\} \cup Q = S} T(x, y, Q)\]

- $\alpha(G) \leq \Delta_k(G)^*$ for all compact topological packing graphs G
- $\Delta_2(G)$ is the Lovász ϑ-number (Delsarte bound)
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
- $\mathcal{C}(V^2 \times I_{k-2})_{\geq 0}$ cone of continuous maps $T: V^2 \times I_{k-2} \to \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$\Delta_k(G)^* = \inf \left\{ \alpha : \alpha \in \mathbb{R}, T \in \mathcal{C}(V^2 \times I_{k-2})_{\geq 0}, \right.$$
$$\left. B_k T \leq (\alpha - 1)1_{I=1} - 21_{I=2} \right\}$$

$B_k : \mathcal{C}(I_k \setminus \{\emptyset\}) \to \mathcal{C}(V^2 \times I_{k-2})$, $B_k T(S) = \sum_{Q \subseteq S: |Q| \leq k-2} \sum_{x, y \in S: \{x, y\} \cup Q = S} T(x, y, Q)$

- $\alpha(G) \leq \Delta_k(G)^*$ for all compact topological packing graphs G
- $\Delta_2(G)$ is the Lovász ϑ-number (Delsarte bound)
- $\Delta_3(G)$ is essentially the Bachoc-Vallentin 3-point bound
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
- $\mathcal{C}(V^2 \times I_{k-2}) \succeq_0$ cone of continuous maps $T: V^2 \times I_{k-2} \to \mathbb{R}$ where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$\Delta_k(G)^* = \inf \left\{ \alpha : \alpha \in \mathbb{R}, T \in \mathcal{C}(V^2 \times I_{k-2}) \succeq_0, B_kT \leq (\alpha - 1)1_{I=1} - 21_{I=2} \right\}$$

$B_k: \mathcal{C}(I_k \setminus \{\emptyset\}) \to \mathcal{C}(V^2 \times I_{k-2}), B_kT(S) = \sum_{Q \subseteq S: |Q| \leq k-2} \sum_{x, y \in S: \{x, y\} \cup Q = S} T(x, y, Q)$

- $\alpha(G) \leq \Delta_k(G)^*$ for all compact topological packing graphs G
- $\Delta_2(G)$ is the Lovász ϑ-number (Delsarte bound)
- $\Delta_3(G)$ is essentially the Bachoc-Vallentin 3-point bound
- Stabilization at $\Delta_{\alpha(G)+2}(G)$, but no convergence proof
A hierarchy of k-point bounds for packing problems

- I_{k-2} is the set of independent sets of cardinality $\leq k - 2$
- $\mathcal{C}(V^2 \times I_{k-2})_{\geq 0}$ cone of continuous maps $T: V^2 \times I_{k-2} \rightarrow \mathbb{R}$
 where each $(x, y) \mapsto T(x, y, Q)$ is a positive kernel

Definition (L-Machado-Oliveira-Vallentin 2018)

$$\Delta_k(G)^* = \inf \left\{ \alpha : \alpha \in \mathbb{R}, T \in \mathcal{C}(V^2 \times I_{k-2})_{\geq 0}^\Gamma, B_k T \leq (\alpha - 1)1_{I=1} - 21_{I=2} \right\}$$

$B_k : \mathcal{C}(I_k \setminus \{\emptyset\}) \rightarrow \mathcal{C}(V^2 \times I_{k-2})$, $B_k T(S) = \sum_{Q \subseteq S} \sum_{x,y \in S: |Q| \leq k-2} T(x, y, Q)$

- $\alpha(G) \leq \Delta_k(G)^*$ for all compact topological packing graphs G
- $\Delta_2(G)$ is the Lovász ϑ-number (Delsarte bound)
- $\Delta_3(G)$ is essentially the Bachoc-Vallentin 3-point bound
- Stabilization at $\Delta_{\alpha(G)+2}(G)$, but no convergence proof
- $T(\gamma x, \gamma y, \gamma Q) = T(x, y, Q)$ for all $\gamma \in \Gamma$
Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If I_{k-2}/Γ is finite, then we have the homeomorphism

$$\bigsqcup_{R \in R_{k-2}} V^2/\text{Stab}_\Gamma(R) \simeq (V^2 \times I_{k-2})/\Gamma,$$

where R_{k-2} a complete set of representatives of the orbits of I_{k-2}.
Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If \(I_{k-2}/\Gamma \) is finite, then we have the homeomorphism

\[
\bigsqcup_{R \in \mathcal{R}_{k-2}} V^2/\text{Stab}_\Gamma(R) \simeq (V^2 \times I_{k-2})/\Gamma,
\]

where \(\mathcal{R}_{k-2} \) a complete set of representatives of the orbits of \(I_{k-2} \)

- For \(Q \in \Gamma R \), let \(\gamma_Q \in \Gamma \) be an operation for which \(\gamma_Q R = Q \)
Symmetry reduction

Lemma (L-Machado-Oliveira-Vallentin 2018)
If I_{k-2}/Γ is finite, then we have the homeomorphism

$$
\bigsqcup_{R \in \mathcal{R}_{k-2}} V^2/\text{Stab}_\Gamma(R) \simeq (V^2 \times I_{k-2})/\Gamma,
$$

where \mathcal{R}_{k-2} a complete set of representatives of the orbits of I_{k-2}

- For $Q \in \Gamma R$, let $\gamma_Q \in \Gamma$ be an operation for which $\gamma_Q R = Q$

Corollary
If I_{k-2}/Γ is finite, then we have the isomorphism

$$
\Psi: \bigoplus_{R \in \mathcal{R}_{k-2}} C(V^2)^{\text{Stab}_\Gamma(R)} \rightarrow C(V^2 \times I_{k-2})^\Gamma
$$

given by $\Psi(K)(x, y, Q) = K_{\gamma_Q^{-1}Q}(\gamma_Q^{-1}x, \gamma_Q^{-1}y)$
Stabilizer invariant kernels

- Let $R \in \mathcal{R}_{k-2}$ with $k \leq n$; assume vectors in R independent
Stabilizer invariant kernels

- Let $R \in \mathcal{R}_{k-2}$ with $k \leq n$; assume vectors in R independent
- Let A_R be an $n \times m$ matrix with the vectors of R as columns
Stabilizer invariant kernels

- Let $R \in \mathcal{R}_{k-2}$ with $k \leq n$; assume vectors in R independent
- Let A_R be an $n \times m$ matrix with the vectors of R as columns
- Let $L_{A_R} = L^{-1}A_R^T$, where L is a matrix such that LL^T is the Cholesky factorization of $A_R^TA_R$
Stabilizer invariant kernels

- Let \(R \in \mathcal{R}_{k-2} \) with \(k \leq n \); assume vectors in \(R \) independent
- Let \(A_R \) be an \(n \times m \) matrix with the vectors of \(R \) as columns
- Let \(L_{AR} = L^{-1}A_R^T \), where \(L \) is a matrix such that \(LL^T \) is the Cholesky factorization of \(A_R^T A_R \)

Theorem (Musin 2014 / Nonorthogonal extension LMOV 2018)

Every

\[
K \in \mathcal{C}(S^{n-1} \times S^{n-1})^{\text{StabO}(n)}(\text{span}(R))
\]

can be approximated uniformly by kernels of the form

\[
K(x, y) = \sum_{l=0}^{d} \text{trace}(F_l Y_l^{n,m}(x \cdot y, L_{AR} x, L_{AR} y)),
\]

where the matrices \(F_l \) are positive semidefinite
The cardinality of I_{k-2}/Γ

- We can write $\Delta_k(G)^*$ as an SDP when I_{k-2}/Γ is finite
The cardinality of I_{k-2}/Γ

- We can write $\Delta_k(G)^*$ as an SDP when I_{k-2}/Γ is finite
- If Γ acts transitively on V, then I_{k-2}/Γ is finite for $k = 2, 3$
The cardinality of I_{k-2}/Γ

- We can write $\Delta_k(G)^*$ as an SDP when I_{k-2}/Γ is finite
- If Γ acts transitively on V, then I_{k-2}/Γ is finite for $k = 2, 3$
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it’s not clear how to compute 4-point bounds for spherical codes via this approach
The cardinality of I_{k-2}/Γ

- We can write $\Delta_k(G)^*$ as an SDP when I_{k-2}/Γ is finite
- If Γ acts transitively on V, then I_{k-2}/Γ is finite for $k = 2, 3$
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it’s not clear how to compute 4-point bounds for spherical codes via this approach
- For finite spherical distance graphs we do not need SOS techniques
The cardinality of I_{k-2}/Γ

- We can write $\Delta_k(G)^*$ as an SDP when I_{k-2}/Γ is finite
- If Γ acts transitively on V, then I_{k-2}/Γ is finite for $k = 2, 3$
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it’s not clear how to compute 4-point bounds for spherical codes via this approach
- For finite spherical distance graphs we do not need SOS techniques
- Implementation of $\Delta_k(G)^*$ for finite spherical distance graphs for general k
The cardinality of I_{k-2}/Γ

- We can write $\Delta_k(G)^*$ as an SDP when I_{k-2}/Γ is finite.
- If Γ acts transitively on V, then I_{k-2}/Γ is finite for $k = 2, 3$.
- Explains why the Delsarte and Bachoc-Vallentin bounds can be computed for spherical codes, and why it’s not clear how to compute 4-point bounds for spherical codes via this approach.
- For finite spherical distance graphs we do not need SOS techniques.
- Implementation of $\Delta_k(G)^*$ for finite spherical distance graphs for general k.
- Currently computations for $k = 4, 5$.
Spherical finite distance graph with $a_1 = a$, $a_2 = -a$
Spherical finite distance graph with $a_1 = a$, $a_2 = -a$
Spherical finite distance graph with $a_1 = a, a_2 = -a$
Spherical finite distance graph with $a_1 = a$, $a_2 = -a$
Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

\[
\text{last}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in \mathcal{C}(I_t \times I_t)_{\succeq 0}, \right. \\
\left. \quad A_t K(S) \leq -1_{I_{=1}}(S) \text{ for } S \in I_{2t}' \right\}
\]
Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

\[\lambda_{st}(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in \mathcal{C}(I_t \times I_t)_{\geq 0}, \right. \]

\[\left. A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I'_{2t} \right\} \]

\[A_t : \mathcal{C}(I_t \times I_t) \to \mathcal{C}(I_{2t}), \quad A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J') \]
Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

\[\text{last}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in \mathcal{C}(I_t \times I_t)_{\geq 0}, \right. \]
\[\left. A_t K(S) \leq - \sum_{I=1}^{I_t} (S) \text{ for } S \in I'_{2t} \right\} \]

\[A_t : \mathcal{C}(I_t \times I_t) \rightarrow \mathcal{C}(I_{2t}), \quad A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J') \]

- \(\alpha(G) \leq \text{last}_t(G)^* \) for all compact topological packing graphs \(G \)
Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

\[
\text{last}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in \mathcal{C}(I_t \times I_t)_{\geq 0}, \atop A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I'_2t \right\}
\]

\[
A_t : \mathcal{C}(I_t \times I_t) \to \mathcal{C}(I_{2t}), \quad A_t K(S) = \sum_{J,J' \in I_t : J \cup J' = S} K(J, J')
\]

- \(\alpha(G) \leq \text{last}_t(G)^* \) for all compact topological packing graphs \(G \)
- \(\text{last}_t(G)^* \) is a \(2t \)-point bound
Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

\[
l_{as_t}(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in \mathcal{C}(I_t \times I_t) \geq 0, \right. \\
\left. \quad A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I'_{2t} \right\}
\]

\[
A_t : \mathcal{C}(I_t \times I_t) \to \mathcal{C}(I_{2t}), \quad A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J')
\]

- \(\alpha(G) \leq l_{as_t}(G)^* \) for all compact topological packing graphs \(G \)
- \(l_{as_t}(G)^* \) is a \(2t \)-point bound

Theorem

Convergence: \(l_{as_{\alpha(G)}}(G)^* = \alpha(G) \)
Adaptation of the Lasserre hierarchy for packing

Definition (L-Vallentin 2015):

\[\text{las}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in C(I_t \times I_t) \geq 0, \right. \]
\[\left. A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I_{2t}' \right\} \]

\[A_t : C(I_t \times I_t) \to C(I_{2t}), A_t K(S) = \sum_{J, J' \in I_t : J \cup J' = S} K(J, J') \]

- \(\alpha(G) \leq \text{las}_t(G)^* \) for all compact topological packing graphs \(G \)
- \(\text{las}_t(G)^* \) is a \(2t \)-point bound

Theorem

Convergence: \(\text{las}_{\alpha(G)}(G)^* = \alpha(G) \)

(The proof uses the primal)
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of \(N \) particles in \(V \) with pair potential \(f \):

\[
E_t^* = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0, \ldots, 2t\}}, K \in \mathcal{C}(I_t \times I_t) \succeq 0, a_i + A_t K(S) \leq f(S) \right. \\
\left. \text{for } S \in I\equiv i \text{ and } i = 0, \ldots, 2t \right\}
\]
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of \(N \) particles in \(V \) with pair potential \(f \):

\[
E_t^* = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0,\ldots,2t\}}, \ K \in \mathcal{C}(I_t \times I_t) \succeq 0, \ a_i + A_t K(S) \leq f(S) \right. \\
\left. \text{for } S \in I_{-i} \text{ and } i = 0, \ldots, 2t \right\}
\]

- Finite convergence: \(E_N^* \) is equal to the ground state energy
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of N particles in V with pair potential f:

$$E_t^* = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0,\ldots,2t\}}, K \in \mathcal{C}(I_t \times I_t) \succeq 0, a_i + A_t K(S) \leq f(S) \right. $$

$$\quad \left. \text{for } S \in I_{=i} \text{ and } i = 0, \ldots, 2t \right\}$$

- Finite convergence: E_N^* is equal to the ground state energy
- E_1^* is essentially the Yudin bound
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of N particles in V with pair potential f:

$$E^*_t = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0, \ldots, 2t\}}, K \in \mathcal{C}(I_t \times I_t) \succeq 0, \right.$$

$$a_i + A_t K(S) \leq f(S)$$

for $S \in I_{\equiv i}$ and $i = 0, \ldots, 2t \right\}$

- Finite convergence: E^*_N is equal to the ground state energy
- E^*_1 is essentially the Yudin bound
- E^*_2 conjectured to be universally sharp for $N = 5$ on S^2
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of N particles in V with pair potential f:

$$E^\ast_t = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0,\ldots,2t\}}, K \in \mathcal{C}(I_t \times I_t) \succeq 0,\right.$$

$$a_i + A_t K(S) \leq f(S)$$

for $S \in I_{\equiv i}$ and $i = 0, \ldots, 2t \}$

- Finite convergence: E^\ast_N is equal to the ground state energy
- E^\ast_1 is essentially the Yudin bound
- E^\ast_2 conjectured to be universally sharp for $N = 5$ on S^2
- Computational approach: Harmonic Analysis/SOS/SDP
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of N particles in V with pair potential f:

$$E^*_t = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0, \ldots, 2t\}}, K \in C(I_t \times I_t) \succeq 0, a_i + A_t K(S) \leq f(S) \right. \left. \text{ for } S \in I \equiv i \text{ and } i = 0, \ldots, 2t \right\}$$

- Finite convergence: E^*_N is equal to the ground state energy
- E^*_1 is essentially the Yudin bound
- E^*_2 conjectured to be universally sharp for $N = 5$ on S^2
- Computational approach: Harmonic Analysis/SOS/SDP
- Numerically verified with high precision SDP solver for, e.g., the Riesz s-potentials with $s = 1, \ldots, 7$
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the ground state energy of \(N \) particles in \(V \) with pair potential \(f \):

\[
E^*_t = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0, \ldots, 2t\}}, K \in \mathcal{C}(I_t \times I_t) \succeq 0, \right.
\]

\[a_i + A_t K(S) \leq f(S) \]

\[\text{for } S \in I_{\equiv i} \text{ and } i = 0, \ldots, 2t \left\} \right.

- Finite convergence: \(E^*_N \) is equal to the ground state energy
- \(E^*_1 \) is essentially the Yudin bound
- \(E^*_2 \) conjectured to be universally sharp for \(N = 5 \) on \(S^2 \)
- Computational approach: Harmonic Analysis/SOS/SDP
- Numerically verified with high precision SDP solver for, e.g., the Riesz \(s \)-potentials with \(s = 1, \ldots, 7 \)
- \(N = 5 \) particularly interesting because of the phase transition
Adaptation to energy minimization (L-2016)

The following optimization problem gives a lower bound on the
ground state energy of N particles in V with pair potential f:

$$E_t^* = \sup \left\{ \sum_{i=0}^{2t} \binom{N}{i} a_i : a \in \mathbb{R}^{\{0,\ldots,2t\}}, \ K \in \mathcal{C}(I_t \times I_t)_{\geq 0}, \ a_i + A_t K(S) \leq f(S) \right. \left. \text{for } S \in I_{\equiv i} \text{ and } i = 0, \ldots, 2t \right\}$$

- Finite convergence: E_N^* is equal to the ground state energy
- E_1^* is essentially the Yudin bound
- E_2^* conjectured to be universally sharp for $N = 5$ on S^2
- Computational approach: Harmonic Analysis/SOS/SDP
- Numerically verified with high precision SDP solver for, e.g.,
 the Riesz s-potentials with $s = 1, \ldots, 7$
- $N = 5$ particularly interesting because of the phase transition
- See Schwartz’ talk on Friday for his approach that solves this
 problem for all s in an interval containing the phase transition
Specialization to finite distance graphs (LMOV 2018)

\[
\text{last}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in \mathcal{C}(I_t \times I_t)_{\succeq 0}, \right.
\]

\[
A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I'_{2t} \left\}
\]

- May assume \(K \) is \(O(n) \)-invariant
- Again only finitely many linear constraints (one for each orbit)
- Need to describe the cone \(\mathcal{C}(I_t \times I_t) \)
- Fourier inversion: \(K(J,J') = \sum \pi \text{trace}(F\pi Z\pi(J,J')) \)
- Need to compute the zonal matrices \(Z\pi(J,J') \)
Specialization to finite distance graphs (LMOV 2018)

\[
\lambda_{st}(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in C(I_t \times I_t)_{\geq 0}, \right. \\
A_tK(S) \leq -1_{I=1}(S) \text{ for } S \in I'_{2t} \left. \right\}
\]

- May assume \(K \) is \(O(n) \)-invariant
Specialization to finite distance graphs (LMOV 2018)

\[\text{las}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in C(I_t \times I_t) \succeq 0, \right. \\
\left. A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I'_{2t} \right\} \]

- May assume \(K \) is \(O(n) \)-invariant
- Again only finitely many linear constraints (one for each orbit)
Specialization to finite distance graphs (LMOV 2018)

\[\text{last}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in C(I_t \times I_t) \geq 0, \right. \]
\[\left. A_t K(S) \leq -1_{I_{1=1}}(S) \text{ for } S \in I_2' \right\} \]

- May assume \(K \) is \(O(n) \)-invariant
- Again only finitely many linear constraints (one for each orbit)
- Need to describe the cone \(C(I_t \times I_t)^O(n) \)
Specialization to finite distance graphs (LMOV 2018)

\[
\text{last}_t(G) = \inf \left\{ K(\emptyset, \emptyset) : K \in C(I_t \times I_t) \geq 0, \right. \\
\left. A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I_{2t}^{'} \right\}
\]

- May assume \(K \) is \(O(n) \)-invariant
- Again only finitely many linear constraints (one for each orbit)
- Need to describe the cone \(C(I_t \times I_t)^{O(n)} \) \(\succeq 0 \)
- Fourier inversion: \(K(J, J') = \sum_{\pi} \text{trace}(F_{\pi} Z_{\pi}(J, J')) \)
Specialization to finite distance graphs (LMOV 2018)

\[\text{las}_t(G)^* = \inf \left\{ K(\emptyset, \emptyset) : K \in \mathcal{C}(I_t \times I_t)_{\succeq 0}, \quad \right. \\
A_t K(S) \leq -1_{I=1}(S) \text{ for } S \in I_{2t}' \left\} \]

- May assume \(K \) is \(O(n) \)-invariant
- Again only finitely many linear constraints (one for each orbit)
- Need to describe the cone \(\mathcal{C}(I_t \times I_t)^{O(n)}_{\succeq 0} \)
- Fourier inversion: \(K(J, J') = \sum_{\pi} \text{trace}(F_{\pi} Z_{\pi}(J, J')) \)
- Need to compute the zonal matrices \(Z_{\pi}(J, J') \)
Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $\mathcal{C}(I_t) = \bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi,i}$
Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $C(I_t) = \bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi,i}$

- Compatible orthonormal bases:
 \[H_{\pi,i} = \text{span}\{e_{\pi,i,1}, \ldots, e_{\pi,i,d_{\pi}}\} \]
Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $C(I_t) = \bigoplus_\pi \bigoplus_{i=1}^{m_\pi} H_{\pi,i}$

- Compatible orthonormal bases:
 \[H_{\pi,i} = \text{span}\{e_{\pi,i,1}, \ldots, e_{\pi,i,d_\pi}\} \]

- Addition formula:
 \[Z_\pi(J, J')_{i,i'} = \sum_j e_{\pi,i,j}(J) e_{\pi,i,j}(J'). \]
Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $C(I_t) = \bigoplus_{\pi} \bigoplus_{i=1}^{m_{\pi}} H_{\pi,i}$
- Compatible orthonormal bases:
 $H_{\pi,i} = \text{span}\{e_{\pi,i,1}, \ldots, e_{\pi,i,d_{\pi}}\}$
- Addition formula:
 $$Z_{\pi}(J, J')_{i,i'} = \sum_{j} e_{\pi,i,j}(J)e_{\pi,i,j}(J').$$
- Can automate this using integration over compact groups
Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $C(I_t) = \bigoplus_\pi \bigoplus_{i=1}^{m_\pi} H_{\pi,i}$
- Compatible orthonormal bases:
 $H_{\pi,i} = \text{span}\{e_{\pi,i,1}, \ldots, e_{\pi,i,d_\pi}\}$
- Addition formula:
 $$Z_\pi(J, J')_{i,i'} = \sum_j e_{\pi,i,j}(J)e_{\pi,i,j}(J').$$
- Can automate this using integration over compact groups
- Slow for large n
Approach via the addition formula

- Decompose into $O(n)$-irreducibles: $C(I_t) = \bigoplus_\pi \bigoplus_{i=1}^{m_\pi} H_{\pi,i}$

- Compatible orthonormal bases:

 $H_{\pi,i} = \text{span}\{e_{\pi,i,1}, \ldots, e_{\pi,i,d_\pi}\}$

- Addition formula:

 $$Z_\pi(J, J')_{i,i'} = \sum_{j} e_{\pi,i,j}(J)e_{\pi,i,j}(J').$$

- Can automate this using integration over compact groups

- Slow for large n

- This is like generating all spherical harmonics if you only need the Jacobi polynomials
Connection to the Stiefel harmonics

- Let $\text{Hom}_{O(n)}(I_t, H_\pi)$ be the space of continuous $O(n)$-equivariant maps $I_t \rightarrow H_\pi$
Connection to the Stiefel harmonics

- Let $\text{Hom}_{O(n)}(I_t, H_\pi)$ be the space of continuous $O(n)$-equivariant maps $I_t \to H_\pi$

- Let $\{\varphi_\pi^i\}$ be a basis of this space
Connection to the Stiefel harmonics

- Let $\text{Hom}_{O(n)}(I_t, H_\pi)$ be the space of continuous $O(n)$-equivariant maps $I_t \to H_\pi$
- Let $\{\varphi_{i}^{\pi}\}$ be a basis of this space
- Then, $Z_\pi(J, J')_{i,i'} = \langle \varphi_{i}^{\pi}(J), \varphi_{i'}^{\pi}(J') \rangle$
Connection to the Stiefel harmonics

- Let $\text{Hom}_{O(n)}(I_t, H_\pi)$ be the space of continuous $O(n)$-equivariant maps $I_t \to H_\pi$
- Let $\{\varphi^\pi_i\}$ be a basis of this space
- Then, $Z_\pi(J, J')_{i,i'} = \langle \varphi^\pi_i(J), \varphi^\pi_{i'}(J') \rangle$
- We have

$$\text{Hom}_{O(n)}(I_t, H_\pi) \simeq \bigoplus_{R \in \mathcal{R}_t} H^\text{Stab}_{O(n)}(R)$$

where \mathcal{R}_t is a complete set of representatives of the orbits
Connection to the Stiefel harmonics

- Let $\text{Hom}_{O(n)}(I_t, H_\pi)$ be the space of continuous $O(n)$-equivariant maps $I_t \to H_\pi$
- Let $\{\varphi_i^\pi\}$ be a basis of this space
- Then, $Z_\pi(J, J')_{ii'} = \langle \varphi_i^\pi(J), \varphi_i^\pi(J') \rangle$
- We have

\[
\text{Hom}_{O(n)}(I_t, H_\pi) \cong \bigoplus_{R \in \mathcal{R}_t} H_\pi^{\text{Stab}_{O(n)}(R)}
\]

where \mathcal{R}_t is a complete set of representatives of the orbits
- Find the right representations H_π of $O(n)$
Connection to the Stiefel harmonics

- Let $\text{Hom}_{O(n)}(I_t, H_\pi)$ be the space of continuous $O(n)$-equivariant maps $I_t \to H_\pi$
- Let $\{ \varphi^\pi_i \}$ be a basis of this space
- Then, $Z_\pi(J, J')_{i,i'} = \langle \varphi^\pi_i(J), \varphi^\pi_{i'}(J') \rangle$
- We have

$$\text{Hom}_{O(n)}(I_t, H_\pi) \cong \bigoplus_{R \in \mathcal{R}_t} H^{\text{Stab}_{O(n)}}_\pi(R)$$

where \mathcal{R}_t is a complete set of representatives of the orbits
- Find the right representations H_π of $O(n)$
- We are essentially interested in

$$H^{SO(n-i)}_\pi \quad \text{for} \quad i = 0, \ldots, t$$

where π is a representation of $SO(n)$
Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

\[\dim(H^{SO(n-t)}_\pi) = \text{mult}(H_\pi, L^2(SO(n)/SO(n-t))) =: m_\pi \]
Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

\[\dim(H_{\pi}^{SO(n-t)}) = \text{mult}(H_{\pi}, L^2(SO(n)/SO(n-t))) =: m_\pi \]

- \(SO(n)/SO(n-t) \) is a Stiefel manifold

[Gelbart 1974] showed \(m_\pi \lambda \) seems to be an act of providence.
Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

\[
\dim(H_{\pi}^{SO(n-t)}) = \text{mult}(H_{\pi}, L^2(SO(n)/SO(n-t))) =: m_\pi
\]

- \(SO(n)/SO(n-t)\) is a Stiefel manifold

- Using the branching rules of the special orthogonal groups we see that for \(2t < n\) we can index the representations \(\pi\) with \(m_\pi \neq 0\) by nonincreasing vectors \(\lambda \in \mathbb{N}_0^t\)
Connection to the Stiefel harmonics

- By Frobenius reciprocity we have
 \[\dim(H_{\pi}^{SO(n-t)}) = \text{mult}(H_{\pi}, L^2(SO(n)/SO(n-t))) =: m_{\pi} \]

- \(SO(n)/SO(n-t) \) is a Stiefel manifold

- Using the branching rules of the special orthogonal groups we see that for \(2t < n \) we can index the representations \(\pi \) with \(m_{\pi} \neq 0 \) by nonincreasing vectors \(\lambda \in \mathbb{N}_0^t \)

- The polynomial representations \(\rho \) of \(\text{GL}(t) \) can also be indexed by such vectors!
Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

\[\dim(H_{\pi}^{SO(n-t)}) = \text{mult}(H_{\pi}, L^2(SO(n)/SO(n-t))) =: m_{\pi} \]

- \(SO(n)/SO(n-t)\) is a Stiefel manifold

- Using the branching rules of the special orthogonal groups we see that for \(2t < n\) we can index the representations \(\pi\) with \(m_{\pi} \neq 0\) by nonincreasing vectors \(\lambda \in \mathbb{N}_0^t\)

- The polynomial representations \(\rho\) of \(GL(t)\) can also be indexed by such vectors!

- [Gelbart 1974] showed \(m_{\pi\lambda} = \dim(\rho_{\lambda})\)
Connection to the Stiefel harmonics

- By Frobenius reciprocity we have

\[\dim(H^\text{SO}(n-t)_\pi) = \text{mult}(H_\pi, L^2(SO(n)/SO(n-t))) =: m_\pi \]

- \(SO(n)/SO(n-t) \) is a Stiefel manifold

- Using the branching rules of the special orthogonal groups we see that for \(2t < n \) we can index the representations \(\pi \) with \(m_\pi \neq 0 \) by nonincreasing vectors \(\lambda \in \mathbb{N}_0^t \)

- The polynomial representations \(\rho \) of \(\text{GL}(t) \) can also be indexed by such vectors!

- [Gelbart 1974] showed \(m_{\pi_\lambda} = \dim(\rho_\lambda) \)

"seems to be an act of providence"
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho\lambda} \rightarrow H_{\pi\lambda}^{SO(n-t)}$
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho\lambda} \to H_{\pi\lambda}^{SO(n-t)}$
- The first maps a vector in $H_{\rho\lambda}$ to a function $O(n) \to H_{\rho\lambda}$
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho,\lambda} \rightarrow H_{\pi,\lambda}^{SO(n-t)}$
- The first maps a vector in $H_{\rho,\lambda}$ to a function $O(n) \rightarrow H_{\rho,\lambda}$
- Construct $H_{\rho,\lambda}$ as polynomials $\text{GL}(t) \rightarrow \mathbb{C}$
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho \lambda} \rightarrow H_{\pi \lambda}^{SO(n-t)}$
- The first maps a vector in $H_{\rho \lambda}$ to a function $O(n) \rightarrow H_{\rho \lambda}$
- Construct $H_{\rho \lambda}$ as polynomials $GL(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho \lambda}$ we can also describe $H_{\pi \lambda}^{SO(n-i)}$ for $0 \leq i < t$
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho\lambda} \rightarrow H_{\pi\lambda}^{SO(n-t)}$
- The first maps a vector in $H_{\rho\lambda}$ to a function $O(n) \rightarrow H_{\rho\lambda}$
- Construct $H_{\rho\lambda}$ as polynomials $GL(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho\lambda}$ we can also describe $H_{\pi\lambda}^{SO(n-i)}$ for $0 \leq i < t$
- Combining this gives

$$Z_{\pi}(J, J')_{i,i'} = \int_{O(n)} \int_{U(t)} p_{\pi,i,i',J,J'}(\gamma, \xi) \, d\xi \, d\gamma,$$

where $p_{\pi,i,i',J,J'}$ is some explicitly computable polynomial
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_\lambda} \rightarrow H^{SO(n-t)}_{\pi_\lambda}$
- The first maps a vector in H_{ρ_λ} to a function $O(n) \rightarrow H_{\rho_\lambda}$
- Construct H_{ρ_λ} as polynomials $GL(t) \rightarrow \mathbb{C}$
- By choosing subspaces of H_{ρ_λ} we can also describe $H^{SO(n-i)}_{\pi_\lambda}$ for $0 \leq i < t$
- Combining this gives

$$Z_{\pi}(J, J')_{i, i'} = \int_{O(n)} \int_{U(t)} p_{\pi, i, i', J, J'}(\gamma, \xi) \, d\xi \, d\gamma,$$

where $p_{\pi, i, i', J, J'}$ is some explicitly computable polynomial
- Outer integral is difficult in general since n is large
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho \lambda} \rightarrow H^{SO(n-t)}_{\pi \lambda}$
- The first maps a vector in $H_{\rho \lambda}$ to a function $O(n) \rightarrow H_{\rho \lambda}$
- Construct $H_{\rho \lambda}$ as polynomials $GL(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho \lambda}$ we can also describe $H^{SO(n-i)}_{\pi \lambda}$ for $0 \leq i < t$
- Combining this gives

$$Z_{\pi}(J, J')_{i,i'} = \int_{O(n)} \int_{U(t)} p_{\pi,i,i',J,J'}(\gamma, \xi) \, d\xi \, d\gamma,$$

where $p_{\pi,i,i',J,J'}$ is some explicitly computable polynomial
- Outer integral is difficult in general since n is large
- Z_{π} is $O(n - t)$-invariant, so we only need to evaluate Z_{π} at sets J, J' for which $p_{\pi,i,i',J,J'}$ depends on very few entries of γ
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho_\lambda} \rightarrow H_{\pi_\lambda}^{SO(n-t)}$
- The first maps a vector in H_{ρ_λ} to a function $O(n) \rightarrow H_{\rho_\lambda}$
- Construct H_{ρ_λ} as polynomials $GL(t) \rightarrow \mathbb{C}$
- By choosing subspaces of H_{ρ_λ} we can also describe $H_{\pi_\lambda}^{SO(n-i)}$ for $0 \leq i < t$
- Combining this gives

$$Z_{\pi}(J, J')_{i, i'} = \int_{O(n)} \int_{U(t)} p_{\pi, i, i', J, J'}(\gamma, \xi) \, d\xi \, d\gamma,$$

where $p_{\pi, i, i', J, J'}$ is some explicitly computable polynomial
- Outer integral is difficult in general since n is large
- Z_{π} is $O(n-t)$-invariant, so we only need to evaluate Z_{π} at sets J, J' for which $p_{\pi, i, i', J, J'}$ depends on very few entries of γ
- [Gorin-Lopez 2008] give formula to compute the integral of a monomial over $O(n)$ where the complexity depends only on the entries and degrees of the integrand (not on n)
Connection to the Stiefel harmonics

- [Gross-Kunze 1977] give two isomorphisms $H_{\rho \lambda} \rightarrow H_{\pi \lambda}^{SO(n-t)}$
- The first maps a vector in $H_{\rho \lambda}$ to a function $O(n) \rightarrow H_{\rho \lambda}$
- Construct $H_{\rho \lambda}$ as polynomials $GL(t) \rightarrow \mathbb{C}$
- By choosing subspaces of $H_{\rho \lambda}$ we can also describe $H_{\pi \lambda}^{SO(n-i)}$ for $0 \leq i < t$
- Combining this gives

$$Z_{\pi}(J, J')_{i,i'} = \int_{O(n)} \int_{U(t)} p_{\pi,i,i',J,J'}(\gamma, \xi) \, d\xi \, d\gamma,$$

where $p_{\pi,i,i',J,J'}$ is some explicitly computable polynomial

- Outer integral is difficult in general since n is large
- Z_{π} is $O(n - t)$-invariant, so we only need to evaluate Z_{π} at sets J, J' for which $p_{\pi,i,i',J,J'}$ depends on very few entries of γ
- [Gorin-Lopez 2008] give formula to compute the integral of a monomial over $O(n)$ where the complexity depends only on the entries and degrees of the integrand (not on n)
- The implementation is work in progress
Thank you!